On the Continuity of Representations of Effectivity Functions
نویسندگان
چکیده
An effectivity function assigns to each coalition of individuals in a society a family of subsets of alternatives such that the coalition can force the outcome of society’s choice to be a member of each of the subsets separately. A representation of an effectivity function is a game form with the same power structure as that specified by the effectivity function. In the present paper we investigate the continuity properties of the outcome functions of such representation. It is shown that while it is not in general possible to find continuous representations, there are important subfamilies of effectivity functions for which continuous representations exist. Moreover, it is found that in the study of continuous representations one may practically restrict attention to effectivity functions on the Cantor set. Here it is found that general effectivity functions have representations with lower or upper semicontinuous outcome function. 1 Communication with: Hans Keiding, Institute of Economics, University of Copenhagen, Studiestraede 6, DK-1455 Copenhagen K, Denmark. Email: [email protected]
منابع مشابه
The Representations and Positive Type Functions of Some Homogenous Spaces
‎For a homogeneous spaces ‎$‎G/H‎$‎, we show that the convolution on $L^1(G/H)$ is the same as convolution on $L^1(K)$, where $G$ is semidirect product of a closed subgroup $H$ and a normal subgroup $K $ of ‎$‎G‎$‎. ‎Also we prove that there exists a one to one correspondence between nondegenerat $ast$-representations of $L^1(G/H)$ and representations of ...
متن کاملOn the Integral Representations of Generalized Relative Type and Generalized Relative Weak Type of Entire Functions
In this paper we wish to establish the integral representations of generalized relative type and generalized relative weak type as introduced by Datta et al [9]. We also investigate their equivalence relation under some certain conditions.
متن کاملContinuity of super- and sub-additive transformations of continuous functions
We prove a continuity inheritance property for super- and sub-additive transformations of non-negative continuous multivariate functions defined on the domain of all non-negative points and vanishing at the origin. As a corollary of this result we obtain that super- and sub-additive transformations of continuous aggregation functions are again continuous aggregation functions.
متن کاملElementary Computable Topology
We revise and extend the foundation of computable topology in the framework of Type-2 theory of effectivity, TTE, where continuity and computability on finite and infinite sequences of symbols are defined canonically and transferred to abstract sets by means of notations and representations. We start from a computable topological space, which is a T0-space with a notation of a base such that in...
متن کاملQuartic and pantic B-spline operational matrix of fractional integration
In this work, we proposed an effective method based on cubic and pantic B-spline scaling functions to solve partial differential equations of fractional order. Our method is based on dual functions of B-spline scaling functions. We derived the operational matrix of fractional integration of cubic and pantic B-spline scaling functions and used them to transform the mentioned equations to a syste...
متن کامل